
Testing FAST TCP over Abilene

Stanislav Shalunov 〈shalunov@internet2.edu〉

2nd PFLDnet Workshop, Argonne, 2004-02-17



Test of FAST TCP over Abilene

• Production circuit (2.5 Gb/s) saturated for 30 minutes

– The circuit from the Abilene core T-640 router in Atlanta

(ATLA) to the SoX GigaPoP

• No use of QoS techniques

• No fancy AQM (default drop-tail discipline was used)

• No adverse effects on conventional traffic

– No losses

– An increase of delay by relatively stable 5–6ms

1



Test Sites: Five Throughput Continental US

SoX Southern Crossroads GigaPoP in Atlanta

PNW Pacific Northwest GigaPoP in Seattle

PSC Pittsburgh Supercomputing Center in Pittsburgh

NC-ITEC North Carolina Internet2 Technology Evaluation Cen-

ter in Raleigh

STTL The measurement rack in a Qwest PoP next to the Abi-

lene core router in Seattle

2



Test Machines: Eight

fast1, fast2 a Linux 2.4.20 machine with FAST TCP kernel

patches, at SoX

fast3 a Linux 2.4.20 machine with conventional TCP, at SoX

fast4 a Linux 2.4.20 machine with FAST TCP kernel patches,

at NC-ITEC

fast5 a Linux 2.4.20 machine with FAST TCP kernel patches,

at PNW

fast6 a Linux 2.4.20 machine with conventional TCP, at PSC

gigatcp1 a FreeBSD 4.3-RELEASE machine with conventional

TCP, at SoX

nms1-sttl a FreeBSD 4.6-RELEASE machine with conventional

TCP, at STTL

3



Test Paths: Four

path1 nms1-sttl → gigatcp1 (stock FreeBSD Reno),

path2 fast4 → fast1 (Linux with FAST patches),

path3 fast5 → fast2 (Linux with FAST patches),

path4 fast6 → fast3 (stock Linux Reno).

• Individual bottlenecks: 1Gb/s at sender NIC (and before re-

ceiver)

• Collective bottleneck: 2.5Gb/s at OC-48 from ATLA to SoX

4



Test Methodology

• One TCP connection on each path

• Staggered start (one connection per 15 minutes)

• Unlimited supply of data

– Memory-to-memory copy

– Three connections congestion-limited

– One connection limited by CPU speed on sender—to mea-

sure loss and delay for cross-traffic

• Throughput and delay measurements on all paths

5



Measuring Delay

• FAST TCP patches log kernel messages with various param-

eters of internal state

• For non-FAST connections, a custom tool was used to mea-

sure delay

• Same tool also used for FAST connections, so these come

with two sets of data

6



Custom Throughput and Delay Measurement
Tool

• Client/server architecture

• Client requests window size and I/O block size

• Client sends blocks of data with timestamps in the beginning

• Server echoes timestamps

• Client prints machine-readable statistics

• Source code available at

http://www.internet2.edu/˜shalunov/i2perf/

7



Baseline Tests

• Conducted on each path sequentially

• No temporal overlap

• path1 is limited by CPU speed

• The rest get good performance

• Plots are in the paper but not this talk

8



Concurrent Test Schedule

Test conducted on Nov 11, 2003 between 2 am and 6 am ET

Second Event
0 path1 starts

900 path2 starts
1800 path3 starts
2700 path4 starts
3600
4500 path2 finishes
5400 path3 finishes
6300 path4 finishes
7200 path1 finishes

9



Overall test results

Baseline
Path Mb/s min rtt avg rtt max rtt
path1 286.100 58.751 61.419 1868.287
path2 938.460 44.250 62.850 802.687
path3 650.589 59.378 100.497 1600.684
path4 602.295 46.129 91.357 851.856

Concurrent
Path Mb/s min rtt avg rtt max rtt
path1 280.411 58.643 61.143 1111.416
path2 747.636 25.068 77.155 1090.875
path3 574.248 58.788 111.707 3604.343
path4 577.297 50.610 96.492 957.372

10



Throughput of all paths (concurrent
experiment)

 0

 200

 400

 600

 800

 1000

 0

 9
00

 1
80

0

 2
70

0

 3
60

0

 4
50

0

 5
40

0

 6
30

0

 7
20

0

G
oo

dp
ut

, M
b/

s

Time since start of experiment, s

path4
path3
path2
path1

11



Minimum round-trip time of all paths
(concurrent experiment, user space)

 0

 200

 400

 600

 800

 1000

 0

 9
00

 1
80

0

 2
70

0

 3
60

0

 4
50

0

 5
40

0

 6
30

0

 7
20

0

R
T

T
, m

s

Time since start of experiment, s

path4 min
path3 min
path2 min
path1 min

12



Average round-trip time of all paths (concurrent
experiment, user space)

 0

 200

 400

 600

 800

 1000

 0

 9
00

 1
80

0

 2
70

0

 3
60

0

 4
50

0

 5
40

0

 6
30

0

 7
20

0

R
T

T
, m

s

Time since start of experiment, s

path4 avg
path3 avg
path2 avg
path1 avg

13



Round-trip time of path2 and path3 (concurrent
experiment, kernel space)

 0

 200

 400

 600

 800

 1000

 0

 9
00

 1
80

0

 2
70

0

 3
60

0

 4
50

0

 5
40

0

 6
30

0

 7
20

0

R
T

T
, m

s

Time since start of experiment, s

path2 avg
path3 avg

path2 base
path3 base

14



Bottleneck link utilization (from SNMP data)

15



Observations

• Bottleneck link is congested

• Bottleneck link never loses even a single packet belonging to

the path1 flow

• path1 flow packets are not significantly delayed at bottleneck

• Internal queueing on all Linux paths

• More stable throughput on Linux at time of congestion

16



Conclusions

• FAST TCP appears to allow bulk transfers that saturate the

link without affecting conventional traffic

– No QoS

– No AQM

• Linux (with or without FAST TCP patches) appears to build

up internal queues that affect TCP congestion control in a

profound manner

17



Acknowledgments

The tests used FAST TCP machines owned and operated by

Caltech, with the help of Steven Low, Cheng Jin, and

Raj Jayaraman. Cas D’Angelo (Southern Crossroads GigaPoP),

David Richardson (Pacific Northwest GigaPoP), Matt Mathis

(Pittsburgh Supercomputing Center), and John Moore (North

Carolina Internet2 Technology Evaluation Center) provided

high-speed hosting for the test machines.

18



Contact

Stanislav Shalunov 〈shalunov@internet2.edu〉

Source code

http://www.internet2.edu/˜shalunov/i2perf/

19


